Existence and non-existence of frequently hypercyclic subspaces for weighted shifts
نویسندگان
چکیده
منابع مشابه
Difference sets and frequently hypercyclic weighted shifts
We solve several problems on frequently hypercyclic operators. Firstly, we characterize frequently hypercyclic weighted shifts on l(Z), p ≥ 1. Our method uses properties of the difference set of a set with positive upper density. Secondly, we show that there exists an operator which is U-frequently hypercyclic, yet not frequently hypercyclic and that there exists an operator which is frequently...
متن کاملExistence and Nonexistence of Hypercyclic Semigroups
In these notes we provide a new proof of the existence of a hypercyclic uniformly continuous semigroup of operators on any separable infinitedimensional Banach space that is very different from—and considerably shorter than—the one recently given by Bermúdez, Bonilla and Martinón. We also show the existence of a strongly dense family of topologically mixing operators on every separable infinite...
متن کاملAbout Subspace-Frequently Hypercyclic Operators
In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولExistence and non-existence of skew branes
A skew brane is a codimension 2 submanifold in affine space such that the tangent spaces at any two distinct points are not parallel. We show that if an oriented closed manifold has a non-zero Euler characteristic χ then it is not a skew brane; generically, the number of oppositely oriented pairs of parallel tangent spaces is not less than χ/4. We give a version of this result for immersed surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2015
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2015-12444-6